Inglise keel koostelukkseppadele

You are here: Home > METALWORKING

METALWORKING

 

Exercise 1

Read the text and learn the words in bold

Metalworking is the process of working with metals to create individual parts, assemblies, or large scale structures. The term covers a wide range of work from large ships and bridges to precise engine parts and delicate jewelry. It therefore includes a correspondingly wide range of skills, processes, and tools.

Its historical roots span cultures, civilizations, and millennia. Metalworking has evolved from the discovery of smelting various ores, producing malleable and ductile metal useful for tools and adornments. Modern metalworking processes can be categorized as forming, cutting, or joining processes.

Metalworking predates history. No one knows with any certainty where or when metalworking began. The earliest technologies were impermanent and were unlikely to leave evidence for long. The advance that brought metal into focus was the connection of fire and metals. Who accomplished this is as unknown as the when and where, but the Egyptians are thought to have been one of the first civilizations to work gold.

Not all metal required fire to obtain it or work it. Isaac Asimov speculated that gold was the "first metal." His reasoning is that gold by its chemistry is found in nature as nuggets of pure gold. In other words, gold is always found in nature as the metal that it is. There are a few other metals that sometimes occur natively, and as a result of meteors. Almost all other metals are found in ores, a mineral bearing rock, that require heat or some other process to liberate the metal. Another feature of gold is that it is workable as it is found, meaning that no technology beyond eyes to find a nugget and a hammer and an anvil to work the metal is needed. Stone hammer and stone anvil will suffice for technology. This is the result of gold's properties of malleability and ductility. The earliest tools were stone, bone, wood, and sinew. They sufficed to work gold.

At some unknown point the connection between heat and the liberation of metals from rock became clear, rocks rich in copper, tin, and lead came into demand. These ores were mined wherever they were recognized. Remnants of such ancient mines have been found all over what is today the Middle East.

The oxidation potential is important because it is one indicator of how tightly bound to the ore the metal is likely to be. Gold's low oxidation is one of the main reasons that gold is found in nuggets.

Copper ore and tin ore became the next important players in the story of metalworking. Using heat to smelt copper from ore, a great deal of copper was produced. It was used for both jewelry and simple tools. However, copper by itself was too soft for tools requiring edges and stiffness. At some point tin was added into the molten copper and bronze was born. Bronze is an alloy of copper and tin. Bronze was an important advance because it had the edge-durability and stiffness that pure copper lacked. Until the advent of iron, bronze was the most advanced metal for tools and weapons in common use.

Looking beyond the Middle East, these same advances and materials were being discovered and used the world around. China and Britain jumped into the use of bronze with little time being devoted to copper. Japan began the use of bronze and iron almost simultaneously. In the Americas things were different. Although the peoples of the Americas knew of metals, it wasn't until the arrival of Europeans that metal for tools and weapons took off. Jewelry and art were the principal uses of metals in the Americas prior to European influence.

As time progressed metal objects became more common, and ever more complex. The need to further acquire and work metals grew in importance. Skills related to extracting metal ores from the earth began to evolve, and metalsmiths became more knowledgeable. Metalsmiths became important members of society. Fates and economies of entire civilizations were greatly affected by the availability of metals and metalsmiths. The metalworker depends on the extraction of precious metals to make jewelry, build more efficient electronics, and for industrial and technological applications from construction to shipping containers to rail, and air transport. Without metals, goods and services would cease to move around the globe on the scale we know today.

 

Exercise 2

 

 

Exercise 3

 

 

 

 

 

Exercise 5

 

nach oben